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Abstract—In this paper, we propose an improved ideal point
setting method in the framework of MOEA/D. MOEA/D decom-
poses a multi-objective optimisation problem into a number of
scalar optimisation problems and optimise them simultaneously.
The performance of MOEA/D highly relates to its decomposition
method, and the proposed ideal point setting approach is used
in the weighted Tchebycheff (TCH) and penalty-based boundary
intersection (PBI) decomposition approach. It expands the region
of search in the objective space by transforming the original
ideal point into its symmetric point and changes the search
direction of each subproblems in MOEA/D. In order to verify
the proposed ideal point setting method, we design a set of multi-
objective problems(MOPs) . The proposed method is compared
with the original MOEA/D-TCH and MOEA/D-PBI on MOPs.
The experimental results demonstrate that our proposed ideal
point setting method performs well in terms of both diversity
and convergence.

Index Terms—Multi-objective Evolutionary Algorithm, Ideal
Point Setting.

I. INTRODUCTION

Engineering optimization problems usually contain more
than one objectives. The objectives are often conflicting with
each other, which means that improvement in one objective
will lead to the degradation of at least another objective. In
other words, it is impossible to make all of the objectives
to be optimal simultaneously. However, a set of solutions that
represent the trade-off among multiple objectives can be found.
Without loss of generality, a multi-objective optimization
problem can be defined as follows:

minimize F(x) = (f1(x), . . . , fm(x))
T (1)

subject to x ∈ Ω

where Ω =
∏n
i=1[ai, bi] ⊆ Rn is the decision space,

and x = (x1, x2, . . . , xn)
T ∈ Rn is n-dimensional design

variables, F(x) = (f1(x), f2(x), . . . , fm(x))T ∈ Rm is
m-dimensional objective vector. A solution x1 is said to
dominate x2 if fi(x1) ≤ fi(x

2) for each i ∈ {1, . . . ,m}
and fj(x

1)lfj(x
2) for at least one j ∈ {1, . . . ,m}, denoted

as x1 � x2. If there is no other solution x ∈ Ω dominating
x∗ ∈ Ω, x∗ is said to be a Pareto optimal solution. The set
of all the Pareto optimal solutions is called the Pareto optimal
set(PS). Mapping the PS into the objective space obtains a
set of objective vectors,denoted as Pareto front (PF ), where
PF = {F(x) ∈ Rm|x ∈ PS}. For a minimizing multi-
objective optimisation problem, the minimum value of each
objective in PF forms an ideal point, which can be denoted as
z∗ = (z∗1 , . . . , z

∗
m)T , where z∗i = min

x∈Ω
fi(x), i ∈ {1, . . . ,m}.

Multi-objective evolutionary algorithm (MOEA) is a
population-based stochastic searching algorithm, and has the
capacity to solve multi-objective optimisation problems in
a single run. Convergence and diversity are two important
metrics in MOEA, and much effort has been made to balance
them. At present, MOEAs can be classified into three cate-
gories according to their fitness assign methods, which are
dominance-based, indicator-based and decomposition-based
ones. In dominance-based MOEAs, the fitness of an individual
is decided by non-dominated sorting and distance metrics.
Representative algorithms include NSGA-II [1],SPEA-II[2],
and PAES-II[3]. Indicator-based MOEAs assign the fitness
values to individuals according to their contribution to the
performance metrics such as IGD[4] and HV[5]. Repre-
sentative algorithms include IBEA[6], R2-IBEA[7], SMS-
EMOA[8] and HypE[9]. In decomposition-based MOEAs,
a multi-objective optimisation problem has been decom-
posed into a number of single objective or simple multi-
objective optimisation problems. Representative algorithms in-
clude IMMOGLS[10], UGA[11], cMOGA[12], MOEA/D[13]
and MOEA/D-M2M[14]. Multi-objective evolutionary algo-
rithm based on decomposition (MOEA/D[13]) is a very pop-
ular decomposition-based MOEA. It decomposates a multi-
objective optimisation problem into a number of single ob-
jective optimisation subproblems and optimises them in a
collaborative way. The diversity can be obtained in a implicit
manner by setting the weight vectors in MOEA/D.A number of



MOEA/D variants have been proposed and studied (e.g., [14–
18]), their main efforts focus on balancing the performance of
convergence and diversity. MOEA/D-STM[16] uses a simple
and effective stable matching(STM) model to coordinate the
selection process in MOEA/D and it tradeoffs convergence
and diversity of the evolutionary search by the STM model.
MOEA/D-M2M[14] decompose a multi-objective optimisation
problem into a set of simple multi-objective optimisation
subproblems. Each subproblem has its own population and
the diversity can be maintained by setting uniform direction
vectors in the objective space. MOEA/D-DRA[17] allocates
the computational resource to each subproblems dynamically
according to their utility function, so that the performance
of convergence can be enhanced. EAG-MOEA/D[18] uses
an external archive to guide the search direction. It uses a
decomposition-based strategy to evolve its working population
and uses a domination-based sorting to maintain the external
archive, so that the convergence and diversity can be main-
tained simultaneously.

The remainder of this paper is organised as follows. Section
II introduces the proposed ideal point setting method and the
algorithm. Section II designs a set of multi-objective optimi-
sation problems (MOPs). Section IV gives the experimental
results and Section V concludes the paper.

II. IDEAL POINT SETTING AND ALGORITHM

Ideal point is used in the decomposition methods, such
as Tchebycheff (TCH) approach and Penalty-based boundary
Intersection(PBI) approach. In order to address the influence
of ideal point for these two decomposition methods, we
will briefly introduce them and their search directions in the
objective space.

1) Tchebycheff (TCH) Approach: In this method, the ith
decomposed single optimisation subproblems is defined as
follows:

minimize gtch(x|λi, z∗) = max
1≤j≤m

{λijfj(x)} (2)

subject to x ∈ Ω

Its search direction vector ai is defined as (1/λi1, . . . , 1/λ
i
m)T

2) Penalty-Based Boundary Intersection (PBI) Approach:

minimize gpbi(x|λi, z∗) = d1 + θd2 (3)
d1 = (F(x)− z∗)Tλi/‖λi‖

d2 = ‖F(x)− z∗ − (d1/‖λi‖)λi‖
subject to x ∈ Ω

Its search direction vector ai is defined as (λi1, . . . , λ
i
m)T .

Where θ is a user-defined penalty parameter, λi =
(λi1, . . . , λ

i
m)T is a weighted vector, and

∑m
j=1 λ

i
j = 1.

In the above decomposition methods, the setting of ideal
point z∗ is critical. However, very few researchers have paid
attention to it. We usually set the ideal point z∗ to be the
minimum value of each objective in the population during the
evolutionary process. This method of setting ideal point z∗

limits the search area as shown in Figure 1. In this Figure,

the true PF is segment AD, if we use z∗ as the ideal point,
only the segment BC can be achieved. Because the search
direction of each subproblems is limited in the area of f1 −
z∗ − f2. However, if we move the ideal point z∗ to z

′
, the

search area can be expanded to f
′

1 − z∗ − f ′2 in the objective
space and the whole true Pareto front can be possibly achieved.
The algorithm works as follows.

Algorithm:MOEA/D-IP
Input:

1) a MOP;
2) a stopping criterion;
3) N : the number of subproblems;
4) a set of of N weight vectors: λ1, . . . , λN ;
5) T : the size of the neighborhood;
6) f : the DE parameter;
7) δ: the probability of selecting parents from the

neighborhood;
8) nr: the maximal number of solutions replaced by

a child.
Output: A set of non-dominated solutions NS;
Step 1: Initialisation:

a) Decompose the MOP into N subproblems associ-
ated with λ1, . . . , λN .

b) Generate an initial population P = {x1, . . . ,xN}.
c) Let NS = P .
d) Compute the Euclidean distance between any two

weight vectors and obtain T closest weight vectors
to each weight vector. For each i = 1, . . . , N , set
B(i) = {i1, . . . , iT }, where λi1 , . . . , λiT are the
T closest weight vectors to λi.

Step 2: Population update
For i = 1, . . . , N , do

a) Generate a random number r from [0, 1]. If r <
δ, S = B(i), else S = {1, . . . , N}

b) Set r1 = i and randomly select two indexes from
S, and generate yi = xr1 + f ∗ (xr2 − xr3).

c) Perform a mutation operator on yi, and repair yi.
d) Update z∗, For each j = 1, . . . ,m, if z∗j > fj(y

i),
then set z∗j = fj(y

i).Set z
′
= −z∗.

e) Update of Solutions: Set c = 0 and then do the
following:

1) If c = nr or S is empty, go to Step3. Ohter-
wise, select an index j from S randomly.

2) if g(yi|λj , z′) ≤ g(xj |λj , z′), then set xj =
yi and c = c+ 1.

3) Remove j from S and go to 1).
f) Set NS = P .

Step 3: Termination If stopping criteria are satisfied,
output NS. Otherwise, go to Step 2.

It is worth noting that the ideal point setting should consider
the population’s distribution. If the ideal point is too far
away from the population, many subproblems will not find
the optimal value in its search direction. However, if the
ideal point is too close to the population, it will lose the



diversity. In different evolutionary stage, the ideal point should
set differently. In the early stage of the evolution, the ideal
point can be set a little far away from the population and
in the later evolutionary process, the ideal point should close
to z∗. In order to handle this issue, we take the symmetric
point of the original ideal point z∗ as the ideal point z

′
and

z
′
= −z∗. It is worth noting that each objective of MOPs

should be nonnegative, and this assumption will ensure that
the position of new ideal point z

′
is in the lower left of z.

Setting the new ideal point z
′
= −z∗ will expand the search

regions in the early evolutionary stage as shown in Figure 1. In
the later evolutionary stage, the new ideal point z

′
is very close

to z∗, and this will enhance the convergence of MOEA/D.

Fig. 1. Illustrations on the influence of ideal point setting.

To verify the effectiveness of the proposed ideal point set-
ting, we design a set of multi-objective optimisation problems
in the following section and conduct a series of experiments
which are described in detail in the Section of Experimental
Study.

III. DESIGN OF MOPS

In order to demonstrate the effectiveness of the improved
ideal point setting, we will design some special multi-objective
optimisation problems. These problems should have the fol-
lowing properties.

1) The diversity of the solutions of the multi-objective
optimisation problems should not be easy to acquire.

2) The convergence of the solutions of the multi-objective
optimisation problems is easy to achieve compared with their
diversity.

3) The MOPs have different shapes of Pareto fronts, such
as convex, concave and discrete ones.

The following MOPs are designed based on ZDT[19]. g(x)
functions used in our instances are different from those in their
original versions. Their decision space is [0, 1]m, m equals 30.
In order to control the difficulty level in terms of convergence,
g(x) should be unimodal and without deceptive optimal value.
The diversity will be easy achieved if each component of

TABLE I
OBJECTIVE FUNCTIONS OF MOP1-MOP7.

Function Name Function Definition

MOP1 PF convex


minimize f1(x) = x1
minimize f2(x) = g(x)(1−

√
f1/g(x))

g(x) = 1 +
∑m

i=2 (xi − sin(0.5πx1))
2

m = 30, xi ∈ [0, 1]

MOP2 PF concave


minimize f1(x) = x1
minimize f2(x) = g(x)(1− (f1/g(x))

2)

g(x) = 1 +
∑m

i=2 (xi − sin(0.5πx1))
2

m = 30, xi ∈ [0, 1]

MOP3 PF discrete



minimize f1(x) = x1
minimize f2(x) = 1 + g(x)(1−

√
f1/g(x)

−(f1/g(x))sin(10πf1))
g(x) = 1 +

∑m
i=2 (xi − sin(0.5πx1))

2

m = 30, xi ∈ [0, 1]

MOP4 PF convex



minimize f1(x) = x1
minimize f2(x) = g(x)(1−

√
f1/g(x))

ti = xi −
√
sin(0.5πx1)

g(x) = 1 +
∑m

i=2 ti
2

m = 30, xi ∈ [0, 1]

MOP5 PF concave



minimize f1(x) = x1
minimize f2(x) = g(x)(1− (f1/g(x))

2)

ti = xi −
√
sin(0.5πx1)

g(x) = 1 +
∑m

i=2 ti
2

m = 30, xi ∈ [0, 1]

MOP6 PF convex



minimize f1(x) = x1
minimize f2(x) = g(x)(1−

√
f1/g(x))

ti = xi − (sin(0.5πx1))
0.6

g(x) = 1 +
∑m

i=2 ti
2

m = 30, xi ∈ [0, 1]

MOP7 PF concave



minimize f1(x) = x1
minimize f2(x) = g(x)(1− (f1/g(x))

2)

ti = xi − (sin(0.5(i/m)πx1))
0.2

g(x) = 1 +
∑m

i=2 ti
2

m = 30, xi ∈ [0, 1]

decision variables in Pareto set is linear correlation. Given
the above assumption, we design a set of multi-objective
optimisation problems (MOPs) as shown in Table I.Every test
problem has similar Pareto set, like xi = sin(0.5aπx1)

b,
where a ∈ [0, 1] and b ∈ [0, 1].

IV. EXPERIMENTAL STUDY

A. Experimental Settings

In order to evaluate the performance of improved ideal
point setting mentioned in section II, we compare the pro-
posed method with MOEA/D-TCH (also called MOEA/D)
and MOEA/D-PBI, and then studied the experimental results
on MOP1-MOP7. Thirty independent runs with the four al-
gorithms are conducted. The detailed parameter settings are
summarised as follows.

1) Setting for reproduction operators: The mutation proba-
bility Pm = 1/n (n is the number of decision variables) and
its distribution index is set to be 20. For the DE operator, we
set CR = 0.5 and f = 0.5 .

2) Population size: N = 200.



3) Number of runs and stopping condition: Each algorithm
runs 30 times independently on each test problems. The
algorithm stops until 200 000 function evaluations.

4) Neighborhood size: T = 20.
5) Probability use to select in the neighborhood: δ = 0.95.
6) The maximal number of solutions replaced by a child:

nr = 20.
7) The penalty parameter θ = 5.0.

B. Performance Metric

In this work, the performance of a multi-objective evolu-
tionary algorithm is evaluated in two aspects convergence and
diversity. Convergence describes the closeness of the obtained
Pareto front to the true Pareto front. Diversity on the other
hand depicts how the solutions in the obtained Pareto are
distributed. We select two metrics - inverted generation dis-
tance (IGD)[4] and relative hypervolume indicator (I−H )[20].
Detailed definitions of them are given as follows:
• Inverted Generational Distance (IGD):

Let P ∗ be the ideal Pareto front set, A is an approximate Pareto
front set achieved by evolutionary multi-objective algorithm.
IGD metric denotes the distance between P ∗ and A. It is
defined as follows:

IGD(P ∗, A) =
∑

y∗∈P∗ d(y
∗,A)

‖P∗‖

d(y∗, A) = miny∈A{
√∑m

i=1(y
∗
i − yi)2}

(4)

• Relative Hypervolume Indicator (I−H ):
I−H simultaneously considers the distribution of the obtained
Pareto front A and its vicinity to the true Pareto front.
IH(P ∗, R) is defined as the volume enclosed by P ∗ and the
reference vector R = (R1, . . . , Rm). IH(A,R) is defined
as the volume enclosed by A and the reference vector R.
I−H(A,P ∗, R)can be defined as:

I−H(A,P ∗, R) = IH(P ∗, R)− IH(A,R)

IH(P ∗, R) = V olv∈P∗(v)

IH(A,R) = V olv∈A(v)

(5)

Here, V olv∈P∗(v) represents the volume enclosed by solution
v ∈ P ∗ and the reference vector R, and V olv∈A(v) represents
the volume enclosed by solution v ∈ A and the reference
vector R. When computing the above metrics, 200 points are
uniformly sampled from the true PF. When calculating the I−H ,
the reference point R is (1.2, 1.2)T for MOPs except MOP3,
and the reference point of MOP3 is (1.2, 2.2)T . The smaller
values of IGD and I−H represent a better performance.

C. Experimental Result

In order to demonstrate the effectiveness of the proposed
ideal point setting method, we compared it with MOEA/D-
TCH and MOEA/D-PBI. The final populations with the best
I−H metric in 30 independent runs in the framework of
MOEA/D are shown in Figure 2.

From Figure 2, it is clear that MOEA/D-IP has obtained
better Pareto fronts on MOP2, MOP5 and MOP7 than

MOEA/D. For MOP1, MOP2, MOP3 and MOP4, MOEA/D
and MOEA/D-IP have the similar Pareto fronts. It is worth to
note that Figure 2 gives the best I−H metric in 30 independent
runs. The mean value of IGD and I−H metrics are shown in
Table II and Table III. The IGD metrics of MOEA/D-IP on
MOP1-MOP7 are significant better than MOEA/D. In terms
of I−H metric, MOEA/D-IP is significant better than MOEA/D
on MOP1-MOP6. Although on MOP7, there is no significant
difference between MOEA/D and MOEA/D-IP, the mean value
of I−H of MOEA/D-IP is better than MOEA/D. The variance
of MOEA/D-IP is much bigger than MOEA/D on MOP7, that
is the reason that the I−H value of MOEA/D and MOEA/D-IP
has no significant difference. In term of convergence speed, as
shown in Figure 3, the left is IGD metric and the right is I−H .
It can be observed that the convergence speed of MOEA/D-
IP is much faster than MOEA/D on all MOPs except MOP3.
However, the final IGD and I−H values of MOEA/D-IP is much
more better than MOEA/D on MOP3.

From Figure 4, we can observe that the diversity of
MOEA/D-PBI-IP is better than that of MOEA/D-PBI on
MOP1, MOP2, MOP3, MOP5 and MOP7. On test instances
MOP4 and MOP6, the convergence of MOEA/D-PBI-IP is
better than that of MOEA/D-PBI. To further verify the effec-
tiveness of proposed ideal point setting method, we calculate
the IGD metric and I−H metric and make some stastic analysis,
as shown in Table IV and Table V. From these two tables,
we can clearly observe that MOEA/D-PBI-IP is significant
better than MOEA/D-PBI in terms of both IGD metric and
I−H metric on all of the test instances. In term of convergence
speed, as shown in Figure 5, MOEA/D-PBI-IP is much better
than MOEA/D-PBI on all of the test instances. From the above
experimental analysis, we can conclude that the proposed ideal
point setting method is very effective in both framework of
MOEA/D and MOEA/D-PBI, and the effectiveness is even
better in the framework of MOEA/D-PBI.

V. CONCLUSION

This paper proposes an improved ideal point setting method
which transforms the original ideal point into its symmetric
point in order to expand the subproblems search area in the
objective space. To verify the proposed ideal point setting
method, we compare it with MOEA/D using two commonly
used decomposition methods - weighted Tchebycheff (TCH)
and penalty-based boundary intersection (PBI). We also design
a set of multi-objective optimisation problems named MOPs
to verify the effectiveness of proposed ideal point setting
method. Experimental results show that the proposed ideal
point setting approach outperforms the original ideal setting
method in terms of both convergence and diversity under the
framework of MOEA/D-TCH and MOEA/D-PBI. The future
work includes setting the ideal point adaptively according
to the population’s evolutionary information, combining the
proposed ideal point setting method with other state-of-the-art
algorithms to further improve their performance, and testing
them in real-world applications.



TABLE II
IGD VALUES OF MOEA/D AND MOEA/D-IP.

Instance MOEA/D MOEA/D-IP Wilcoxon’s Rank
– Mean Std. Mean Std. p-value h-value

MOP1 9.83E-02 6.00E-02 3.09E-03 6.28E-05 1.73E-06 1.00E+00
MOP2 3.18E-01 4.55E-02 1.62E-02 1.89E-03 1.73E-06 1.00E+00
MOP3 1.67E-01 8.40E-02 8.97E-02 1.19E-01 2.43E-02 1.00E+00
MOP4 4.47E-03 1.91E-03 2.87E-03 9.38E-05 1.73E-06 1.00E+00
MOP5 5.03E-01 3.84E-02 2.71E-02 8.61E-02 1.73E-06 1.00E+00
MOP6 2.46E-02 4.52E-02 2.85E-03 6.70E-05 1.73E-06 1.00E+00
MOP7 5.97E-01 1.87E-02 3.66E-01 2.80E-01 4.45E-05 1.00E+00

TABLE III
I−H VALUES OF MOEA/D AND MOEA/D-IP.

Instance MOEA/D MOEA/D-IP Wilcoxon’s Rank
– Mean Std. Mean Std. p-value h-value

MOP1 1.02E-01 5.62E-02 2.85E-03 1.13E-04 1.73E-06 1.00E+00
MOP2 4.13E-01 3.65E-02 8.27E-03 8.88E-04 1.73E-06 1.00E+00
MOP3 4.10E-01 1.77E-01 1.95E-01 2.73E-01 1.48E-03 1.00E+00
MOP4 5.55E-03 2.88E-03 3.44E-03 2.97E-04 9.32E-06 1.00E+00
MOP5 5.14E-01 1.45E-02 2.41E-02 9.16E-02 1.73E-06 1.00E+00
MOP6 2.78E-02 4.86E-02 2.94E-03 1.34E-04 1.73E-06 1.00E+00
MOP7 5.30E-01 8.81E-04 3.38E-01 2.59E-01 1.02E-01 0.00E+00

TABLE IV
IGD VALUES OF MOEA/D-PBI AND MOEA/D-PBI-IP.

Instance MOEA/D-PBI MOEA/D-PBI-IP Wilcoxon’s Rank
– Mean Std. Mean Std. p-value h-value

MOP1 3.06E-01 3.90E-02 5.65E-03 1.74E-04 1.73E-06 1.00E+00
MOP2 5.69E-01 5.84E-02 9.38E-03 4.27E-04 1.73E-06 1.00E+00
MOP3 2.60E-01 3.12E-04 6.87E-02 1.21E-01 1.36E-05 1.00E+00
MOP4 3.54E-01 3.77E-02 5.28E-03 2.31E-04 1.73E-06 1.00E+00
MOP5 6.10E-01 2.87E-04 8.71E-03 4.05E-04 1.73E-06 1.00E+00
MOP6 3.49E-01 4.43E-02 5.36E-03 2.12E-04 1.73E-06 1.00E+00
MOP7 6.10E-01 5.36E-05 6.85E-03 3.79E-04 1.73E-06 1.00E+00

TABLE V
I−H VALUES OF MOEA/D-PBI AND MOEA/D-PBI-IP.

Instance MOEA/D-PBI MOEA/D-PBI-IP Wilcoxon’s Rank
– Mean Std. Mean Std. p-value h-value

MOP1 2.75E-01 3.30E-02 8.05E-03 3.05E-04 1.73E-06 1.00E+00
MOP2 5.24E-01 1.69E-02 1.21E-02 5.88E-04 1.73E-06 1.00E+00
MOP3 5.95E-01 5.09E-04 1.39E-01 2.58E-01 1.36E-05 1.00E+00
MOP4 3.21E-01 3.33E-02 9.08E-03 7.03E-04 1.73E-06 1.00E+00
MOP5 5.31E-01 1.33E-08 1.14E-02 1.12E-03 1.73E-06 1.00E+00
MOP6 3.15E-01 3.83E-02 8.82E-03 5.77E-04 1.73E-06 1.00E+00
MOP7 5.31E-01 1.82E-05 1.03E-02 6.07E-04 1.73E-06 1.00E+00
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Fig. 2. The final populations with the best I−H metric in 30 independent runs
using MOEA/D and MOEA/D-IP
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Fig. 3. The curve of mean IGD and I−H in 30 independent runs using
MOEA/D and MOEA/D-IP
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Fig. 4. The final populations with the best I−H metric in 30 independent runs
using MOEA/D-PBI and MOEA/D-PBI-IP
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Fig. 5. The curve of mean IGD and I−H in 30 independent runs using
MOEA/D-PBI and MOEA/D-PBI-IP
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